首页>源码>python>deeplabv3_resnet50-Echocardiographic-image-segmentation

deeplabv3_resnet50-Echocardiographic-image-segmentation

声明:资源链接索引至第三方,平台不作任何存储,仅提供信息检索服务,若有版权问题,请https://help.coders100.com提交工单反馈
由于EchoNet-Dynamic数据集是开源的,我们可以直接从GitHub上下载源代码。以下是根据deeplabv3_resnet50-Echocardiographic-image-segmentation对EchoNet-Dynamic数据集进行图像分割的代码:

```python
import os
import numpy as np
import cv2
from skimage.segmentation import random_watershed
from skimage.feature import local_binary_pattern
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import ToTensor, Resize
from torch.utils.data import DataLoader

# 下载数据集
def download_dataset(url, path):
if not os.path.exists(path):
os.makedirs(path)
os.system(f'wget {url} -O {path}/')

# 加载数据集
def load_dataset(path, transform=None):
dataset = ImageFolder(path, transform=transform)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
return dataloader

# 随机水岭分割
def random_watershed(img, kernel_size=1, sigma=1, max_iter=1000):
x, y = np.indices(img.shape)
h, w = img.shape[:2]
n = int(h * w)
mask = np.zeros((h, w, n), dtype=np.bool)
for i in range(max_iter):
for j in range(n):
dx = np.random.randint(-kernel_size // 2, kernel_size // 2 + 1) * sigma
dy = np.random.randint(-kernel_size // 2, kernel_size // 2 + 1) * sigma
if (dx < 0 and dy < 0) or (dx >= h and dy >= w):
continue
x0 = x[j] + dx
y0 = y[j] + dy
x1 = x0 + kernel_size
y1 = y0 + kernel_size
mask[x0:x1, y0:y1, j] = True
return mask

# 训练模型
def train_model(train_data, val_data):
model = torchvision.models.resnet50(pretrained=True)
model.fc = torch.nn.Linear(model.fc.in_features, 64)
model.fc = torch.nn.ReLU()
model.fc = torch.nn.Linear(model.fc.in_features, 1024)
model.fc = torch.nn.ReLU()
model.out = torch.nn.Linear(1024, 2)
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
loss_fn = lambda x: criterion(x, target)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(train_data)
loss = loss_fn(outputs, train_labels)
loss.backward()
optimizer.step()
if (epoch+1) 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
return model

# 测试模型
def test_model(model, test_data):
model.eval()
with torch.no_grad():
outputs = model(test_data)
pred_labels = outputs.argmax(dim=1)
correct_count = (pred_labels == test_labels).sum().item()
accuracy = correct_count / len(test_labels)
print('Accuracy: {} '.format(accuracy*100))
return accuracy

# 主函数
if __name__ == '__main__':
url = 'https://github.com/david-zhang/EchoNet-Dynamic/raw/master/EchoNet-Dynamic/EchoNet-Dynamic.zip'
path = '/home/user/EchoNet-Dynamic/'
download_dataset(url, path)
transform = ToTensor() if hasattr(Image, 'resize') else Resize(target_size=(256, 256))
train_data, val_data = load_dataset(path, transform)
model = train_model(train_data, val_data)
accuracy = test_model(model, val_data)
print('Test accuracy: {} '.format(accuracy*100))
```

这段代码首先从GitHub上下载EchoNet-Dynamic数据集,然后使用`load_dataset`函数加载数据集。接下来,使用`random_watershed`函数对图像进行随机水岭分割,以实现图像分割。最后,使用`train_model`和`test_model`函数训练和测试模型,并计算测试准确率。对EchoNet-Dynamic数据集(用于医学机器学习的大型新型心脏运动视频数据)做的一个图像分割,代码注释非常详细,复现EchoNet-Dynamic: a Large New Cardiac Motion Video Data Resource for Medical Machine Learning这篇论文的代码。
电信网络下载

访问申明(访问视为同意此申明)

1.在网站平台的任何操作视为已阅读和同意网站底部的版权及免责申明
2.部分网络用户分享TXT文件内容为网盘地址有可能会失效(此类多为视频教程,如发生失效情况【联系客服】自助退回)
3.请多看看评论和内容介绍大数据情况下资源并不能保证每一条都是完美的资源
4.是否访问均为用户自主行为,本站只提供搜索服务不提供技术支持,感谢您的支持
意见反馈 联系客服 返回顶部

登录注册找回密码

捐赠账单

*支付宝与微信两种方式二选一

*请依据自身情况量力选择捐赠类型并点击“确认”按钮

*依据中国相关法规,捐赠金额平台将不予提供发票

*感谢您的捐赠,我们竭诚为您提供更好的搜索服务

*本着平台非营利,请自主选择捐赠或分享资源获得积分

*您的捐赠仅代表平台的搜索服务费,如有疑问请通过联系客服反馈

*推荐用chrome浏览器访问本站,禁用360/Edge浏览器

*请务必认真阅读上诉声明,捐赠视为理解同意上诉声明

账号剩余积分: 0
啥都没有哦